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Abstract

High performance nanopositioning stages, used in a variety of applications such as atomic force microscopy
and three-dimensional nanometer-scale lithography, require stringent position control over relatively large dis-
placements and a broad frequency range. Piezoelectric materials, which are typically employed in nanoposi-
tioining stages, provide excellent position control when driven at relatively low frequency and low field levels.
However, in applications where the stage operates over a relatively large region (microns to millimeters) and
broad frequency range (Hz - kHz), piezoelectric materials often exhibit nonlinear and rate-dependent hystereis
which requires control designs that can effectively accommodate such behavior. In this paper, a nonlinear,
thermal-relaxation, piezoelectric constitutive law is incorporated into an open loop optimal tracking control
design to accurately track a desired reference signal when nonlinearities, thermal relaxation and hyteresis are
present. A comparison between linear optimal control and the nonlinear optimal control design is given to
illustrate performance enhancements when the constitutive behavior is included in the control design.
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1. Introduction

Highly accurate nanopositioning control becomes increasingly important in applications such image steering
devices [24], piezoresponse force microscopy [5], atomic manipulation [22], and protein delivery [23]. Often,
piezoelectric materials are chosen as actuators in nanopositioning stages as well as embedded actuators within
MEMS devices [24]. These materials provide small displacements and large forces over a relatively large bandwith
(Hz - MHz); however, nonlinearities and hysteresis often occur at moderate to large electric field levels. This
behavior requires the development of a control design that ensures adequate control input is available to meet the
performance objectives while accommodating constitutive nonlinearities and hysteresis. For example, the real-
time monitoring of protein unfolding using an atomic force microscope requires highly accurate position control
at high scan rates which are sufficient to introduce constitutive nonlinearities and hysteresis in the piezoelectric
actuator and subsequently in the positioning stage. In addition, low scan rates or static displacement control
can lead to drift from relaxation mechanisms thus reducing accuracy in characterizing a specimen.

In applications where high performance and accuracy are not critical, constitutive nonlinearities and hys-
teresis can be compensated using classical Proportional-Integral (PI) or Proportional-Integral-Derivative (PID)
control, but this can potentially lead to bandwidth limitation and inefficiencies. Alternatively, it is illustrated in
[7, 8] that the use of charge- or current-controlled amplifiers can essentially eliminate hysteresis. Unfortunately,
this mode of operation can be prohibitively expensive relative to more commonly employed voltage-controlled
amplifiers. Furthermore, current control is ineffective if maintaining DC offsets as is the case when the x-stage
of an AFM is in a fixed position while a sweep is performed with the y-stage. The present analysis focuses on
control development for these applications where nanoscale position accuracy is paramount and charge control
is infeasible.
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Considerable attention has been focused on appropriate control strategies to compensate for ferroelectric
hysteresis and nonlinearities in piezoelectric actuators used in nanopositioning stages [3, 12, 13, 14, 19, 25]. PI
and PID control designs have been shown to be limited in bandwidth and are only effective in small scanning
regimes where hysteresis is minimal. At moderate to large field levels where the nonlinearties and hysteresis
increase, instabilities may occur as the control gains are necessarily increased to achieve the required accuracy.
The application of linear robust control techniques such asH∞ control have provided improvements in bandwidth
and robustness to nonlinearities and hysteresis [12, 13, 14]. However, when linear robust control methods are
implemented, the control input focuses on compensating for the ferroelectric constitutive behavior which reduces
the ability to compensate for external disturbance loads and system dynamics of the device. This has led to
research focused on the design and implemention of nonlinear, model-based control designs to accommodate
constitutive nonlinearities and hysteresis [3, 11, 19].

The development and implementation of the nonlinear control design is presented as follows. In Section 2
a ferroelectric homogenized energy model is summarized and employed in a set of partial differential equations
(PDE) and subsequent finite element model of the piezoelectric nanopositioning stage. In Section 3, the nonlinear
control design is developed. First, open loop linear tracking control design is developed and compared to the
nonlinear optimal control design.

2. Nanopositioning Stage and Hysteresis Model
The control design is focused on nanopositioning stages driven by piezoelectric stack actuators for applica-

tions in atomic force microscopy (AFM). The typical AFM system is illustrated in Figure 1. The side view
illustrates the nanopositioning stage and piezoelectric actuator that controls specimen height relative to the
cantilever. In this mode of operation, a photodiode measures changes in height of the cantilever position by
reflecting a laser beam off the cantilever and a feedback law is used to reposition the specimen to maintain
constant surfaces. The surface is scanned in this manner which yields the surface structure of the specimen.
In-plane position control is achieved using two additional stack actuators as illustrated in the top view of the
positioning stage in Figure 1(ii). In-plane actuator coupling is typically negligible in this design which allows
development of the control design for a single actuator. Piezoelectric tube actuators can also be employed to
control in-plane and out-of-plane displacement. Tube designs have provided improved linear behavior but the
non-negligible coupling between in-plane displacements further complicates the control design [19]. The control
design presented here is suitable for accommodating coupling present in a piezoelectric-tube actuator, but the
finite element implementation is more complex; e.g., see [17]. The focus here is on control development, therefore
the decoupled stack actuator nanopositioner design is considered.

The model development employed in the present analysis focuses on a homogenized energy framework to
formulate a highly accurate displacement control that can be efficiently implemented in real-time applications.
The constitutive model is based on a previously developed homogenized energy-based model [16, 18, 20, 21]. The
model incorporates mesocopic material behavior at the domain or grain level in a stochastic homogenization
framework to predict macroscopic material behavior. A distribution of interaction fields and coercive fields
are implemented to model polarization switching processes that typically occur in the presence of material
inhomogeneities and residual fields. Boltzmann relations are included to model thermal relaxation behavior when
thermal energy affects polarization switching. Macroscopic material behavior is determined by homogenizing
the local polarization variants according to the distribution of interaction and coercive fields.

2.1 Homogenized Energy Model

The equations governing the homogenized energy model are summarized here. A detailed review of the mod-
eling framework is given in [16, 18, 20]. The constitutive law is focused on uniaxial loading of rod-type actuators
since the decoupled piezoelectric stack actuators are assumed in the control design of the nanopositioning stage
for in-plane position control. The Gibbs energy at the mesoscopic length scale is

G(P, T ) = Ψ(P, T )− EP (1)

where Ψ(P, T ) is the Helmholtz energy detailed in [16], T is temperature, E is the electric field, and P is
the polarization. In the one-dimensional case considered here, the Helmholtz energy function is a double-well
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Figure 1: Schematic of an atomic force microscope configuration used in constructing the nonlinear control design.
(i) Side view of the AFM set-up with out-of-plane displacement control piezoelectric actuator. (ii) Top view of the
positioning stage illustrating the configuration of the in-plane displacement control piezoelectric actuators.

potential below the Curie point Tc which gives rise to stable spontaneous polarization with equal magnitude in
the positive and negative directions.

Thermal relaxation in the piezoelectric material is often present and must be addressed in the constitutive
model to predict creep that may occur in the nanopositioning stage. This can be accomplished by employing
the Boltzmann relation

µ(G) = Ce−GV/kT (2)

which quantifies the probability µ of achieving an energy level G. The relative thermal energy (kT/V ) is
defined over a representative volume element V at the mesoscopic length scale, k is Boltzmann’s constant, and
the constant C is specified to ensure integration to unity. The inclusion of thermal energy in the energy function
incorporates the effect of switching prior to the minima in G disappearing as the temperature increases. This
reduces the sharp transition of ferroelectric switching near the coercive field as the thermal energy increases.

The Boltzmann relation gives rise to the expected values

〈P+〉 =

∫ ∞

PI

Pµ(G)dP , 〈P−〉 =

∫ −PI

−∞

Pµ(G)dP (3)

of the polarization associated with positively and negatively oriented variants. Here ±PI are the positive and
negative inflection points in the Helmholtz energy definition. Kinetic equations are developed that define the
volume fraction of positive x+ and negative polarization variants x−. The kinetic equations rely on transition
likelihoods that define the probability that polarization variants switch according to the energy relations; see
[16, 18, 21] for details.

The resulting local average polarization is quantified by the relation

P = x+〈P+〉+ x−〈P−〉. (4)

The macroscopic polarization is computed from the distribution of local variants from the relation

[P (E)] (t) =

∫ ∞

−∞

∫ ∞

0

ν(Ec, EI)
[

P (E + EI ;Ec, ξ)
]

(t)dEIdEc (5)
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where ν(Ec, EI) denotes the distribution of coercive and interaction fields and ξ represents the initial distribution
of the local variants. The local polarization P (E + EI ;Ec, ξ) is determined from (4) where the dependence on
interaction fields and coercived fields is embedded in the kinetic equations that describe x+ and x−. The density
ν(Ec, EI) is chosen as

ν(Ec, EI) = c1e
−[ln(Ec/Ec)/2c]

2

e−E2
I /2b2 (6)

where Ec is the average coercive field, c quantifies the coercive field variability, b is the variance of the interaction
field, and c1 is a scaling parameter. Techniques to identify general densities can be found in [18]. Numerical
techniques to approximate (5) and comparison to experimental results can be found in [16].

Whereas the macroscopic polarization is quantified by (5), the forces generated by the stack actuator must
be quantified for implementation within the control design. This is provided by the constitutive law

σ = Y P ε+ cD ε̇− h1(P (E)− P r)− h2(P (E)− P r)2 (7)

representing uniaxial stress in the piezoelectric stack actuator where the effective properties of the actuator
include Y P as the elastic modulus at constant polarization, cD as the Kelvin-Voigt damping parameter, ε as the
linear strain component in the direction of loading, h1 as the piezoelectric coefficient and h2 as the electrostrictive
coefficient. It is assumed that stress fields are limited to the linear elastic regime where ferroelastic switching
(i.e., stress induced domain switching) is negligible. The polarization P (E) is computed using (5) where P r

is the initial macroscopic remanent state of the material. In the simulations presented, the actuator model is
intially poled with a field equal to 2Ec which results in P r = 0.206 C/m2.

Simulations of minor loop hysteresis are illustrated in Figure 2 for the case of zero applied stress. Model
predictions illustrate drift in the polarization and strain behavior for an input sinusoidal waveform at 1 Hz.
The material parameters associated with the homogenized energy model are given in Table 1. The size of the
representative volume element V was selected to give typical relaxation behavior for an isothermal process and
internal damping behavior at room temperature.

The stress computed using (7) includes linear stress-strain behavior as well as nonlinear and hysteretic
dependence on the electric field through the P (E) relation. It does not include spatial dependence. This is
incorporated in the structural model in the following section.

2.2 Structural Model

The constitutive relations (5) and (7) are used to develop a system model that quantifies forces and dis-
placements in the presence of applied fields and stress that occur during operation of the nanopositioning stage.
The partial differential equation (PDE) model is first given and then formulated as set of ordinary differential
equations (ODEs) through a finite element discretization in space. The structural coupling of the nanoposition-
ing stage is modeled as a damped oscillator to account for boundary conditions at the end of the piezoelectric
actuator. The geometry used in constructing the structural model is illustrated in Figure 3.

The equation of motion for the structural model is given by the relation [4, 16]

Table 1: Parameters employed in the homogenized energy model.

c1 = 0.54 C/MV 2

c = 0.4

b = 0.87MV/m

χe = 0.008 C/mV

T = 300 K

V = 1.25× 105 nm3

τ = 100 ns
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Figure 2: Nonlinear and hysteretic homogenized energy model results for minor loop hysteresis typically observed in
ferroelectric materials under zero stress. (a) Electric field versus polarization. (b) Electric field versus longitudinal
microstrain.

ρA
∂2w

∂t2
=
∂Ntot

∂x
(8)

where the mass density of the actuator is denoted by ρ, the cross-section area is A and the displacement is
denoted by w. The total force Ntot acting on the actuator is

Ntot(t, x) = Y PA
∂w

∂x
+ cDA

∂2w

∂x∂t
+ Fp(E) + Fd (9)

where the the first term on the right hand side of the equation represents the elastic restoring force and a linear
damping coefficient is incorporated in the second term. The linear elastic strain component in the direction of
loading is defined by ε = ∂w

∂x . The term Fd incorporates external disturbance loads and the coupling force Fp

represents forces generated by an applied electric field where
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Figure 3: Piezoelectric stack actuator with damped oscillator used to quantify loads during scanning operations of an
AFM nanopositioning stage. Disturbance forces along the actuator are given by Fd and the control input is u(t).
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Table 2: Model parameters for the piezoelectric stack actuator and damped oscillator.

Y P = 60× 109 N/m2 ρ = 7.5× 103 kg/m3 kL = 3.04× 106 N/m

h1 = 1.0× 106 N/C A = 5.07× 10−4 m2 cL = 3.04× 102 Ns/m

h2 = 1.0× 103 Nm2/C2 cD = 3.7× 106 Ns/m mL = 40 g

PR = 0.3 C/m2 L = 0.1 m

Fp(E) = A[h1(P (E)− P r) + h2(P (E)− P r)2] (10)

and the hysteretic and nonlinear E − P relation is specified by (5).
As illustrated in Figure 3, the boundary conditions are defined by a zero displacement at x = 0 and the

balance of forces between the piezoelectric actuator and the damped oscillator at x = L yields

Ntot(t, L) = −kLw(t, L)− cL
∂w

∂t
(t, L)−mL

∂2w

∂t2
(t, L). (11)

The initial conditions are w(0, x) = 0 and ∂w
∂x (0, x) = 0. Model parameters associated with the stack actuator

and damped oscillator used in the control design are given in Table 2.

The strong form of the PDE model given by (8) can be written in the weak form for finite element imple-
mentation; see [16] for details. The weak form of the model given is used to obtain a matrix ODE system given
by

Mẅ +CDẇ +Kw = Fp(E)b+ fd (12)

where w(t) = [w1(t), . . . , wN (t)] are the nodal solutions obtained from the weak formulation and finite element
discretization. M ∈ RN×N , CD ∈ RN×N and K ∈ RN×N denote the mass, damping and stiffness matrices. The
vectors b ∈ RN and fd ∈ RN include the integrated basis functions related to the control input and disturbance
loads, respectively. Components contained within the system matrices and vectors can be found in [11, 16].

Formulation of (12) as a first order system yields

ẋ(t) = Ax(t) + [B(u)](t) +G(t)

x(0) = x0

y(t) = Cx(t)

(13)

where x(t) = [~w, ~̇w]T should not to be confused with the coordinate x. The matrix A incorporates the mass,
damping and stiffness matrices given in (12) and [B(u)](t) includes the nonlinear input where u(t) is defined as
the electric field. The initial conditions are defined by x0. The output of the system y(t) is a function of the
system states according to the matrix C. In the nanopositioning stage, it is assumed that only the displacement
at x = L is observable which results in C =

[

1 0 . . . 0
]

with dimension 1 × 2N . External disturbances
are incorporated in G.

A temporal discretization of the system given by (13) is used to numerically analyze the dynamic perfor-
mance. The trapezoid rule is adopted since it is moderately accurate, A-stable, and requires minimal computer
storage capacity. The trapezoidal discretization yields the relation for each iteration

xk+1 =Wxk +V [B(uk)] +
1

2
V [G(tk) +G(tk+1)]

x(0) = x0

(14)
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where a temporal step size ∆t is employed giving a discretization in time defined by tk = k∆t. The values xk

approximate x(tk). The matrices

W =

[

I−
∆t

2
A

]−1 [

I+
∆t

2
A

]

V = ∆t

[

I−
∆t

2
A

]−1
(15)

are created once for numerical implementation yielding approximate solutions with O(h2, (∆t)2) accuracy. In
(14), only values for the control input at the present time tk are included in the temporal discretization to model
dynamics of real-time feedback developed in the following section. This approach is employed since the control
input can only be dependent on the current and previous states.

3. Control Design

We compare the performance between linear and nonlinear optimal control designs when ferroelectric non-
linearities, hysteresis and relaxation behavior are present in the piezoelectric actuator. The ferroelectric consti-
tutive behavior is shown to introduce significant degradation in position accuracy when linear optimal control
methods are employed. Improvements in high accuracy tracking are then obtained by implementing a nonlinear
optimal control design. Actuator displacements on the order of tens of microns are chosen for the analysis
where it has been demonstrated that nonlinearities and hysteresis are significant. The reference tracking profile
used in the simulations is based on a typical scan and hold procedure used in nano- and micron-scale materal
characterization. This procedure requires that the specimen translate in the x-direction while holding in the
y-direction. At the end of each scan, the position is held in the x-direction and increased or decreased a small
amount in the y-direction and the procedure is repeated in the negative x-direction. A low frequency scan rate
is chose for the simulations (0.2 Hz) where relaxation and creep are significant.

3.1 Optimal Tracking Control

Development of the nonlinear optimal tracking control design follows a previous approach focused on negli-
gible relaxation hysteresis of magnetostrictive actuators for vibration attenuation of beam and plate structures
and tracking control of rod structures [10, 11, 15]. We summarize here key equations associated with opti-
mal tracking control and its application in compensating ferroelectric nonlinearities, hysteresis and relaxation
behavior.

Optimal tracking control utilizes a cost functional to determine the optimal control input. The cost functional

J =
1

2
(Cx(tf )− r(tf ))

TP (Cx(tf )− r(tf )) +

∫ tf

t0

[

H − λT (t)ẋ(t)
]

dt (16)

penalizes the control input and the error between the piezoelectric actuator displacement and the prescibed
displacement where P penalizes large terminal values on the tracking error, H is the Hamiltonian, and λ(t) is
a set of Lagrange multipliers. The Hamiltonian is

H =
1

2

[

(Cx(t)− r(t))TQ(Cx(t)− r(t)) + uT (t)Ru(t)
]

+λT [Ax(t) + [B(u)](t) +G(t)]

(17)

where penalties on the tracking error and the control input are given by the variables Q and R, respectively.
The minimum of the cost functional in (16) is determined under the constraint of the differential equation

given by (13). By employing Lagrange multipliers an unconstrained minimization problem is constructed where
the stationary condition for the Hamiltonian yields the adjoint relation [2, 6]

7



λ̇(t) = −ATλ(t)−CTQCx(t) +CTQr(t) (18)

and optimal control input

u∗(t) = −R−1

(

∂B(u)

∂u

)T

λ(t). (19)

The resulting optimality system is

[

ẋ(t)

λ̇(t)

]

=

[

Ax(t) + [B(u)](t) +G(t)

−ATλ(t)−CTQCx(t) +CTQr(t)

]

x(t0) = x0

λ(tf ) = C
TP (Cx(tf )− r(tf )) .

(20)

The force determined from (10) is included in the input operator [B(u)](t) which directly includes the nonlinear
and hysteretic E − P relation as well as relaxation behavior within the control formulation. This system of
equations results in a two-point boundary value problem which presents challenges in obtaining a solution for
large systems. Furthermore, the nonlinear nature of the input operator precludes an efficient Riccati formulation.

3.2.1 Linear Optimal Control

If the input operator is assumed to be linear and not a function of the polarization state (i.e. valid for small
to moderate field inputs), the control design can be simplified by determining the suboptimal control input from
the algebraic Riccati equation

ATΠ+ΠA−ΠBR−1BTΠ+CTQC = 0 (21)

see [2, 6] for details.
The linear optimal control input is then defined by

u∗(t) = −R−1BT [Πx(t)− ν(t)] (22)

where the variable ν(t) ∈ R2N is the solution to the auxillary differential equation

ν̇(t) = −
[

A−BR−1BTΠ
]T

ν(t)−CTQr(t) +ΠG(t)

ν(tf ) = C
TPr(tf ) .

(23)

3.2.2 Nonlinear Open Loop Optimal Tracking Control

When nonlinearities in the input operator cannot be neglected, (20) has the general form

ż(t) = F(t, z)

E0z(t0) = [x0,0]
T

Efz(tf ) = [0,0]
T

(24)

where z = [x(t), λ(t)]T and

8



F(t, z) =

[

Ax(t) + [B(u)](t) +G(t)

−ATλ(t)−CTQCx(t) +CTQr(t)

]

E0 =

[

I 0

0 0

]

, Ef =

[

0 0

−CTPC I

]

.

(25)

Here I denotes an identity matrix with dimension corresponding to the number of basis functions employed in
the spatial approximation of the state variables. Also note that the prescribed displacement has been restricted
to r(tf ) = 0.

The system given by (24) is approximated by discretizing the time interval [t0, tf ] with a uniform step size
∆t at the points t0, t1, · · · , tN = tf . The approximate values of the state solutions and the adjoint at each
time step are denoted by z0, · · · , zN. Whereas several techniques are available to approximate the solution to
(24), such as finite differences and nonlinear multiple shooting [1], a central difference of the temporal derivative
is utilized here which provides a formulation that can be cast in a analytic LU decomposition to solve the
two-point boundary value problem, details describing the numerical approach are described elsewhere [11]. This
approach results in expressing (24) as the problem of finding zh = [z0, · · · , zN ] which solves

F(zh) = 0 . (26)

Equation (26) includes the optimality system at each time step and the boundary conditions given in (25).
Details are given in [15].

A quasi-Newton iteration of the form

zk+1
h = zkh + ξk

h, (27)

where ξk
h solves

F ′(zkh)ξ
k
h = −F(zkh), (28)

is then used to approximate the solution to the nonlinear system given by (26).

3.2.3 Simulation Results

Improvements in tracking control are demonstrated here by comparing the linear and nonlinear optimal
control designs. The values used to penalized the displacement error and control input were Q = 1 × 1016

and R = 1 × 10−8. The penalty on the final state was P = 1.4 × 1010. In Figure 4, linear optimal control
illustrates poor tracking performance using a scan rate of 0.2 Hz. The thermal relaxation effect is significant in
regions of static displacement as seen in Figure 4(a). In Figure 5, the nonlinear control design is applied to the
piezoelectric actuator again using a scan rate of 0.2 Hz. Significant improvements are achieved in tracking the
reference signal. In Figure 5(a) the commanded displacement and error between the commanded displacement
and reference displacement are given. Whereas relaxation behavior is present at this operating frequency as
illustrated in Figure 5(b), the nonlinear control design significantly reduces error relative to the linear control
design. This is clearly demonstrated in regions of static displacement where the control input increases or
decreases to ensure the polarization is constant which gives rise to static displacement.

4. Concluding Remarks

An open loop nonlinear optimal control design has been applied to a nanopositioning stage for quasi-static
scanning rates for applications where nanoscale resolution is important. A homogenized energy model was
implemented in the control design to account for local residual interaction fields and variations in the coercive
field. Relaxation behavior was incorporated into the constitutive model to account for creep during quasi-static
actuation. The nonlinear control design significantly improved reduction in tracking errors relative to linear

9
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Figure 4: Tracking performance using linear optimal control to compensate for relaxation behavior at 0.2 Hz. (a)
Commanded displacement and the desired reference signal. (b) The associated control input and polarization relaxation
behavior.

optimal control. However, open loop control can lead to deleterious effects when operating uncertainties are
present. Improved robustness can be achieved by introducing perturbation feedback around the optimal open
loop control input but this is beyond the scope of the paper. Details decribing performance robustness for
tracking control using perturbation feedback can be found in [9, 11].
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